设各项实数的等比数列{An}的前n项和满足S3=6,S6=-42 求数列{An}的通项公式?
问题描述:
设各项实数的等比数列{An}的前n项和满足S3=6,S6=-42 求数列{An}的通项公式?
答
设数列{An}首项为A1,公比为q;
S3=A1(1-q³)/(1-q)=6,S6=A1(1-q^6)/(1-q)=-42;
S6/S1=1+q³=-7,∴q=-2;
A1=6(1-q)/(1-q³)=6*(1+2)/(1+8)=2;
通项公式:An=2*(-2)^(n-1)=-(-2)^n;