在△ABC中,AB^=20,AC=4,BC=2,△ABD等腰直角三角形,∠ABD=90°,连接CD,求线段CD的长
问题描述:
在△ABC中,AB^=20,AC=4,BC=2,△ABD等腰直角三角形,∠ABD=90°,连接CD,求线段CD的长
答
答:过点D作DO垂直CB交CB的延长线于点O:
AB^2=20=AC^2+BC^2
故△ACB是直角三角形.
等腰直角△ABD中:AB=BD
RT△ACB与RT△BOD中:
AB=BD
∠CAB+∠CBA=∠CBA+∠OBD=90°
∠CAB=∠OBD
RT△ACB≌RT△BOD:
DO=BC=2
BO=AC=4
RT△COD中:
CD^2=DO^2+(CB+BO)^2=2^2+(2+4)^2=40
所以:CD=2√10