在菱形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F.求证:CE=CF.

问题描述:

在菱形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F.
求证:CE=CF.

证明:∵在菱形ABCD中,AB=AD,∠B=∠D,BC=CD,
又∵AE⊥BC,AF⊥CD,
∴Rt△ABE≌Rt△ADF.
∴BE=DF.
∴CE=CF.
答案解析:根据BC=CD,要证明CE=CF,可以转化为证明BE=DF,从而转化为证明△ABE≌△ADF即可.
考试点:菱形的性质;全等三角形的判定与性质.
知识点:证明线段相等的问题可以转化为证明三角形全等的问题,这是证明线段相等的最基本的思路.