已知2x^2+12x+18=0,(3y+4)^2=(y-4)^2,求代数式4x^2-12xy+9y^2的值
问题描述:
已知2x^2+12x+18=0,(3y+4)^2=(y-4)^2,求代数式4x^2-12xy+9y^2的值
答
2x^2+12x+18=0解得x= -3
(3y+4)^2=(y-4)^2解得y= -2 or 0
4x^2-12xy+9y^2=(2x-3y)^2 = 0 or 36
答
2x^2+12x+18-0
x^2+6x+9=0
(x+3)^2=0
x=-3
(3y+4)^2=(y-2)^2
(3y+4-y+2)(3y+4+y-2)=0
(2y+6)(4y+2)=0
y1=-3 y2=-1/2
把x=-3和y1=-3 ,y2=-1/2代入4x^2-12xy+9y^2=(2x-3y)^2得:9和81/4
所以4x^2-12xy+9y^2的值是9和81/4
答
2x^2+12x+18=0
2(x^2+6x+9)=0
2(x+3)^2=0
解得:x= —3
(3y+4)^2=(y-4)^2
9y^2+24y+16=y^2 —8y+16
解得:y1=0
y2= —4
4x^2-12xy+9y^2
=(2x —3y)^2
1、把x= —3,y=0代入上式,得:
(2x —3y)^2=[2 x(—3)—3x0]^2
=36
2、把x= —3,y= —4代入上式,得:
(2x —3y)^2=[2 x(—3)—3x(—4)]^2
=36
答
36;可以解方程得到x=-3 y=0或者-4,也可以用左边的已知条件配出右边的多项式。