已知数列an的各项均为正数且a1+a2+a3+.an=1/2(an²+an)求证数列an是等差数
问题描述:
已知数列an的各项均为正数且a1+a2+a3+.an=1/2(an²+an)求证数列an是等差数
答
a1+a2+...+an=(1/2)(an²+an)a1+a2+...+a(n-1)=(1/2)(a(n-1)²+a(n-1))两式相减得an=(1/2)(an²+an)-(1/2)(a(n-1)²+a(n-1))移项,得(1/2)(an+a(n-1))=(1/2)(an²-a(n-1)²)=(1/2)(a...两式相减的得数不应该是d=(1/2)(an²+an)-(1/2)(a(n-1)²+a(n-1))吗而且移向之后左边的an怎么又没了应该是an=(1/2)(an²+an)-(1/2)(a(n-1)²+a(n-1),左边的减去右边的1/2an,变为1/2an???an=(1/2)(an²+an)-(1/2)(a(n-1)²+a(n-1)=(1/2)an^2+(1/2)an-(1/2)(a(n-1))^2-(1/2)(an-1),把(1/2)an和-(1/2)(an-1)移到左边,变为an-(1/2)an+(1/2)(an-1)=(1/2)an+(1/2)(an-1)=(1/2)(an+a(n-1))=右边=(1/2)(an²-a(n-1)²)=(1/2)(an+a(n-1))(an-a(n-1)),约去(1/2)(an+a(n-1)),得an-a(n-1)=1,为等差数列。