f(x)=e的负x次方×sinx求f"(x)

问题描述:

f(x)=e的负x次方×sinx求f"(x)

f(x)=e的负x次方.sinx
f'(x)=-e的负x.sinx+e的负x.cosx
f"(x)=e的负x.sinx-e的负x.cosx-e的负x.cosx-e的负x.sinx
=-2e的负x.cosx

f'=e^-x*(cosx-sinx)
f''=-e^-x(cosx-sinx)+e^-x(-sinx-cosx)
=-2e^-xcosx

>> syms x
>>f=exp(-x)*sin(x)

f =

exp(-x)*sin(x)

>> diff(diff(f,x),x)

ans =

-2*exp(-x)*cos(x)