已知函数f(x)=lg(ax-bx),a>1>b>0(1)求f(x)的定义域;(2)在函数f(x)的图象上是否存在不同的两点,使过这两点的直线平行于x轴;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.

问题描述:

已知函数f(x)=lg(ax-bx),a>1>b>0
(1)求f(x)的定义域;
(2)在函数f(x)的图象上是否存在不同的两点,使过这两点的直线平行于x轴;
(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.

(1)由ax-bx>0得(ab)x>1=(ab)0,由于(ab)>1所以x>0,即f(x)的定义域为(0,+∞)(2)任取x1,x2∈(0,+∞),且x1<x2f(x1)=lg(ax1−bx1),f(x2)=lg(ax2−bx2);f(x1)-f(x2)=(ax1−bx1)−(ax2−bx2)...
答案解析:(1)由对数函数的真数大于零求解.
(2)当函数在定义域上单调时,则不存在,当函数在定义域上不单调时,则存在,所以要证明函数是否单调,可用定义法,也可用导数法研究.
(3)由“f(x)在(1,+∞)上恒取正值”则需函数的最小值非负即可,由(2)可知是增函数,所以只要f(1)≥0即可.
考试点:对数函数的单调性与特殊点;对数函数的定义域.


知识点:本题主要考查函数的定义域,单调性及最值,这是常考常新的类型,在转化问题和灵活运用知识,方法方法要求较高.