已知三棱锥P-ABC的四个顶点均在半径为3的球面上,且PA、PB、PC两两互相垂直,则三棱锥P-ABC的侧面积的最大值为(  )A. 18B. 24C. 182D. 242

问题描述:

已知三棱锥P-ABC的四个顶点均在半径为3的球面上,且PA、PB、PC两两互相垂直,则三棱锥P-ABC的侧面积的最大值为(  )
A. 18
B. 24
C. 18

2

D. 24
2

∵PA,PB,PC两两垂直,又∵三棱锥P-ABC的四个顶点均在半径为3的球面上,∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.∴36=PA2+PB2+PC2,则由基本不等式可得PA2+PB2≥2PA•PB,PA2+PC2≥2PA•PC,PB2+PC2...
答案解析:由已知,三棱锥P-ABC的四个顶点均在半径为3的球面上,且PA,PB,PC两两垂直,球直径等于以PA,PB,PC为棱的长方体的对角线,由基本不等式易得到三棱锥P-ABC的侧面积的最大值.
考试点:棱柱、棱锥、棱台的侧面积和表面积.
知识点:本题考查的知识点是棱锥的侧面积,基本不等式,棱柱的外接球,其中根据已知条件,得到棱锥的外接球直径等于以PA,PB,PC为棱的长方体的对角线,是解答本题的关键.