点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=12∠A,BP、CP的延长线交AC、AB于D、E,求证:BE=CD.

问题描述:

点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=

1
2
∠A,BP、CP的延长线交AC、AB于D、E,求证:BE=CD.

证明:作BF⊥CE于F点,CM⊥BD于M点则∠PFB=∠PMC=90°.∵PG是BC的垂直平分线,∴PB=PC.在△PBF和△PCM中,∠PFB=∠PMC∠BPF=∠CPMPB=PC,∴△PBF≌△PCM(AAS),∴BF=CM;∵PB=PC,∴∠PBC=∠PCB=12∠BPE.∵...
答案解析:作BF⊥CE于F点,CM⊥BD于M点.证明Rt△BEF≌Rt△CDM.易证Rt△PBF≌Rt△PCM,得到BF=CM;由于∠A=∠BPE,在四边形ADPE中,根据内角和定理可得∠BEF=∠CDM,所以Rt△BEF≌Rt△CDM.得证.
考试点:线段垂直平分线的性质.
知识点:此题考查了垂直平分线性质、全等三角形的判定和性质等知识点,如何构造全等三角形是难点.