一道高一数学题,大家帮忙呀,急,关于函数的已知函数f(x)=(x+2a-2)/(x+a),a∈Z,是否存在整数a使函数f(x)在(1,+∞)上单调递增,且在x∈(1,+∞),f(x)恒为正,求a,若不存在,说明理由
问题描述:
一道高一数学题,大家帮忙呀,急,关于函数的
已知函数f(x)=(x+2a-2)/(x+a),a∈Z,是否存在整数a使函数f(x)在(1,+∞)上单调递增,且在x∈(1,+∞),f(x)恒为正,求a,若不存在,说明理由
答
他是增函数对吧,那么 设X1>X2 应该有F(X1)>F(X2)原式=(X+a+a-2)/(x+a) =1+(a-2)/(x+a)F(x1)-F(x2)=1+(a-2)/(x1+a)-1-(a-2)(x2+a)=(x1-x2)(2-a)/(x1+a)(x2+a) >0x1-x2>0是已知的 ,(2-A)可以分类讨论 当A>2.F(x1)-F(...