抛物线x平方=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=a向量FB(a>0)过A、B两点分别作抛物线的切线,设其交点为M.1)证明向量FM*向量AB为定值.2)设三角形ABM的面积为S,写出S=f(a)的表达式,并求S的最小值
问题描述:
抛物线x平方=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=a向量FB(a>0)过A、B两点分别作抛物线的切线,设其交点为M.1)证明向量FM*向量AB为定值.2)设三角形ABM的面积为S,写出S=f(a)的表达式,并求S的最小值
答
1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=-1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x^2消去y得:x^2-4kx-4=0,判别式△=16(k^2+1)>0.于是x1+x2=4k,x1x2=-4,曲线4y=x^2上任意一点斜率为...