已知抛物线x^2=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=λ向量FB(λ>0).过AB两点分别作作抛物线的切线,设其交点为M.

问题描述:

已知抛物线x^2=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=λ向量FB(λ>0).过AB两点分别作作抛物线的切线,设其交点为M.
求当λ=1时,求△ABM的面积

A,B,F贡献且向量AF=向量FB,所以A,B关于y轴对称,A(-2,1)B(2,1),切线分别是y=x-1和y=-x-1
交点是(0,-1)面积是4