若命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为(  )A. 1≤a≤3B. -1≤a≤1C. -3≤a≤3D. -1≤a≤3

问题描述:

若命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为(  )
A. 1≤a≤3
B. -1≤a≤1
C. -3≤a≤3
D. -1≤a≤3

∵命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,
∴∀x∈R,使x2+(a-1)x+1≥0,
∴△=(a-1)2-4≤0,
∴-1≤a≤3.
故选D.
答案解析:由命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,知∀x∈R,使x2+(a-1)x+1≥0,由此能求出实数a的取值范围.
考试点:命题的真假判断与应用.
知识点:本题考查命题的真假判断和应用,解题时要注意由命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,知∀x∈R,使x2+(a-1)x+1≥0,由此进行等价转化,能求出结果.