已知a、b、c满足a2+b2+c2=1,a(1b+1c)+b(1a+1c)+c(1a+1b)=−3,那么a+b+c的值为______.
问题描述:
已知a、b、c满足a2+b2+c2=1,a(
+1 b
)+b(1 c
+1 a
)+c(1 c
+1 a
)=−3,那么a+b+c的值为______. 1 b
答
由a(1b+1c)+b(1a+1c)+c(1a+1b)=−3,那么(a+b+c)(1a+1b+1c)=0,∴a+b+c=0或1a+1b+1c=0,当1a+1b+1c=0时,ab+bc+ac=0,∵a、b、c满足a2+b2+c2=1,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,∴(a+b+c)2=a2+b2+c2+2ab...
答案解析:由a(
+1 b
)+b(1 c
+1 a
)+c(1 c
+1 a
)=−3,那么(a+b+c)(1 b
+1 a
+1 b
)=0,即可求解.1 c
考试点:分式的化简求值.
知识点:本题考查了分式的化简求值,属于基础题,关键是由a(
+1 b
)+b(1 c
+1 a
)+c(1 c
+1 a
)=−3变形为(a+b+c)(1 b
+1 a
+1 b
)=0.1 c