1*2+2*3+3*4+4*5+…+n(n+1)(n为正整数)求式子的结果!

问题描述:

1*2+2*3+3*4+4*5+…+n(n+1)(n为正整数)
求式子的结果!

1*2+2*3+3*4+4*5+…+n(n+1)
=1/3 [1*2*(3-0)+2*3*(4-1)+3*4*(5-2)+....+n(n+1)*[(n+2)-(n-1)]]
=1/3[1*2*3-0*1*2+2*3*4-1*2*3+3*4*5-2*3*4+....+n*(n+1)(n+2)-(n-1)*n*(n+1)]
=1/3 [n*(n+1)(n+2)]

因为:1×2=1/3×1×2×3
1×2+2×3=1/3×2×3×4
1×2+2×3+3×4=1/3×3×4×5
1×2+2×3+3×4+4×5=1/3×4×5×6,.
结论:1×2+2×3+3×4+…+n(n+1)= 1/3n(n+1)(n+2)
证明
原式=1/2n(n+1)+1/6n(n+1)(2n+1)
=1/6n(n+1)(2n+4)
=1/3n(n+1)(n+2)
很高兴为您解答,OutsiderL夕为您答疑解惑
如果本题有什么不明白可以追问,