求证:cos4α×tan2α-sin4α=2tanα/(tan^2-1)

问题描述:

求证:cos4α×tan2α-sin4α=2tanα/(tan^2-1)

cos4α×tan2α-sin4α
=[(cos2α)^2-(sin2α)^2]×(sin2α/cos2α)-2cos2αsin2α
=cos2αsin2α-(sin2α^3÷cos2α)-2cos2αsin2α
=-(cos2α^2×sin2α)÷cos2α-(sin2α^3)÷cos2α
=-sin2α/cos2α=-tan2α
而tan2α=2tanα/(1-tan^2),所以2tanα/(tan^2-1) =-tan2α
所以等式成立

证:
cos4α×tan2α-sin4α
=[2(cos2α)^2-1]×tan2α-2sin2αcos2α
=2sin2αcos2α-tan2α-2sin2αcos2α
=-tan2α
=2tanα/(tan^22α -1)
基本上用二倍角公式证