若2tanx++1=0,x∈(-π/2,0),求值:(1)sin【arccos(-√3/2)】,(2)求x并用反三角函数表示
问题描述:
若2tanx++1=0,x∈(-π/2,0),求值:(1)sin【arccos(-√3/2)】,(2)求x并用反三角函数表示
答
(1)因为arccos(-√3/2)=5π/6
所以sin【arccos(-√3/2)】=sin(5π/6)=1/2
(2)2tanx+1=0,x∈(-π/2,0),
所以x=arctan(-1/2)=-arctan(1/2)