f(x)=cos平方x+sinxcosx+3/2 x∈R (1)f(x)的小周期及f(π/8f(x)=cos平方x+sinxcosx+3/2 x∈R (1)f(x)的小周期及f(π/8)的值 (2)求这个函数的单调递增区间

问题描述:

f(x)=cos平方x+sinxcosx+3/2 x∈R (1)f(x)的小周期及f(π/8
f(x)=cos平方x+sinxcosx+3/2 x∈R (1)f(x)的小周期及f(π/8)的值 (2)求这个函数的单调递增区间


f(x)=cos²x+sinxcosx+ (3/2)
=(1/2)(1+cos2x)+(1/2)sin2x + (3/2)
=(1/2)(sin2x+cos2x)+2
=(√2/2)sin[2x+(π/4)] + 2
(1)
T = 2π/2 = π
f(π/8) = (√2/2)sin[(π/4)+(π/4)] + 2
=(4+√2)/2
(2)
考察y=sinx可知,该函数在:[2kπ-(π/2),2kπ+(π/2)] (k∈Z)为增函数,因此:
2kπ-(π/2) ≤ 2x+(π/4) ≤ 2kπ+(π/2),时f(x)为增函数,即:
x∈[kπ-(3π/8),kπ+(π/8) ],f(x)是增函数

f(x)=(1+cos2x)/2+(1/2)sin2x+3/2=(1/2)sin2x+(1/2)cos2x+2=(√2/2)sin(2x+π/4)+2(1)T=2π/2=π,f(π/8)=(√2/2)+2(2)2kπ-π/2≤2x+π/4≤2kπ+π/2得:kπ-3π/8≤x≤kπ+π/8∴递增区间为:[kπ-3π/8,kπ+π/8]...