已知z=u^v,u=ln(x^2+y^2)^(1/2),v=arctan(y/x),求dz
问题描述:
已知z=u^v,u=ln(x^2+y^2)^(1/2),v=arctan(y/x),求dz
答
这个问题主要还是把函数变形
z=u^v两边取对数就可以得到
lnz=v*lnu
然后分别对这两个函数对x和y求偏微分,在组合就行了
对x的偏微分就是
z'/z=v'*lnu+v*(u'/u)
对y的偏微分也一样
不过就是解出的形式太复杂,这里没法写,你把微分求出来就行了
答
你好!
这是一个求全微分的题目
首先
dz=d(u^v)=vu^(v-1)du+u^vlnvdv (1)
然后
du=dln(x^2+y^2)^(1/2)=(xdx+ydy)/(x^2+y^2)^(1/2)
dv=darctan(y/x)=dy/x[1+(y/x)^2]-ydx/x^2[1+(y/x)^2]
将du和dv,以及u,v带入到(1)式即可求得dz了,自己带入一下吧,我这里打字不方便,谢了