知tanα,tanβ是方程x^2-4x-2=0的两个实根,求cos^(α+β)+2sin(α+β)cos(α+β)-2sin^2(α+β)的值?
问题描述:
知tanα,tanβ是方程x^2-4x-2=0的两个实根,求cos^(α+β)+2sin(α+β)cos(α+β)-2sin^2(α+β)的值?
答
因为tanα,tanβ是方程x^2-4x-2=0的两个实根,所以tanα+tanβ=4,
tanα*tanβ=-2,tan(α+β)=tanα+tanβ/1-tanα*tanβ=4/3
原式=[cos(α+β)]^2*{1/cos(α+β)+2tan(α+β)-2[tan(α+β)]^2}
=1/1-[tan(α+β)]^2*{1/√{1-[tan(α+β)]^2}+2tan(α+β)-2[tan(α+β)]^2}
代入求解就行了
答
tana+tanb=4tana*tanb=-2tan(a+b)=(tana+tanb)/(1-tanatanb)=4/3tan(a+b)=sin(a+b)/cos(a+b)=4/3sin(a+b)=4cos(a+b)/3[sin(a+b)]^2+[cos(a+b)]^2=1所以[sin(a+b)]^2=16/25[cos(a+b)]^2=9/25因为sin(a+b)/cos(a+b)=4/...