用等价无穷小原则计算 lim(x→0) [√(1+x)+√(1-x)-2]/x^2= 答案是-1/4 不用洛必达法

问题描述:

用等价无穷小原则计算 lim(x→0) [√(1+x)+√(1-x)-2]/x^2= 答案是-1/4 不用洛必达法

解 设x=sinx √(1+x)=sinx/2+cosx/2 则√(1-x)=cosx/2-sinx/2
x^2=(sinx)^2=4(sinx/2cosx/2)^2
所以lim(x→0) [√(1+x)+√(1-x)-2]/x^2
= lim(x→0)(sinx/2+cosx/2+cosx/2-sinx/2-2)/4(sinx/2cosx/2)^2
=lim(x→0)2(cosx/2-1)/4(sinx/2cosx/2)^2
=lim(x→0)(cosx/2-1)/2(1-cos^2x/2)cos^2(x/2)
=lim(x→0)(cosx/2-1)/2(1+cosx/2)(1-cosx/2)cos^2(x/2)
=lim(x→0)-1/2(1+cosx/2)(cos^2(x/2)
=-1/2*(1+1^2)(1^2)
=-1/4

lim(x→0) [√(1+x)+√(1-x)-2]/x^2= lim(x→0) [(√(1+x)-1)-(1-√(1-x))]/x^2= lim(x→0) [x/(√(1+x)+1)-x/(1+√(1-x))]/x^2= lim(x→0) [1/(√(1+x)+1)-1/(1+√(1-x))]/x= lim(x→0) [ (√(1-x)-√(1+x)) / [(√...