一道用洛必达求极限的题设 [(1+x)^(1/x)-e]/x ,x≠0f(x)={ a ,x=0在x=0处连续,试求a的值我是这么做的:据函数连续的定义知,lim(x->0)f(x) = lim(x->0)[(1+x)^(1/x)-e]/x = a = f(0)=> lim(x->0)[(1+x)^(1/x)-e]/x = lim(x->0){e^[ln(1+x)/x] - e}/x =(0/0不定式) .(几个0/0不定式求导后)=-1/2可答案是0,我很疑惑,我这样也是通过不定式求导啊,为什么不行?如果我直接求导的话,分子里包含冥指函数,我不知道该怎么做了~ 望各位告诉我为什么我的方法不行,并且得用什么方法才行

问题描述:

一道用洛必达求极限的题

[(1+x)^(1/x)-e]/x ,x≠0
f(x)={
a ,x=0
在x=0处连续,试求a的值
我是这么做的:
据函数连续的定义知,lim(x->0)f(x) = lim(x->0)[(1+x)^(1/x)-e]/x = a = f(0)
=> lim(x->0)[(1+x)^(1/x)-e]/x = lim(x->0){e^[ln(1+x)/x] - e}/x =(0/0不定式) .(几个0/0不定式求导后)=-1/2
可答案是0,我很疑惑,我这样也是通过不定式求导啊,为什么不行?如果我直接求导的话,分子里包含冥指函数,我不知道该怎么做了~ 望各位告诉我为什么我的方法不行,并且得用什么方法才行

令y=(1+x)^(1/x)=e^[ln(1+x)/x] 则y`=e^[ln(1+x)/x]{[x/(1+x)-ln(1+x)]/(x^2)} =[(1+x)^(1/x)]{[x/(1+x)-ln(1+x)]/(x^2)} 原式=elim[x/(1+x)-ln(1+x)]/(x^2)(继续用洛必达法则) =elim[1/(1+x)^2-1/(1+x)]/(2x)(分子...