已知数列{an}满足an=2an-1+2n-1(n≥2),a1=5,bn=an−12n(Ⅰ)证明:{bn}为等差数列;   (Ⅱ)求数列{an}的前n项和Sn.

问题描述:

已知数列{an}满足an=2an-1+2n-1(n≥2),a1=5,bn=

an−1
2n

(Ⅰ)证明:{bn}为等差数列;   
(Ⅱ)求数列{an}的前n项和Sn

(I)证明:∵an=2an-1+2n-1(n≥2),∴an−1=2(an−1−1)+2n,∴an−12n=an−1−12n−1+1.∴bn=bn-1+1.∴{bn}是首项为a1−12=5−12=2,公差为1的等差数列;(II)由(I)可得bn=2+(n-1)×1=n+1,∴an−12n=...
答案解析:(I)利用已知an=2an-1+2n-1(n≥2),变形an−1=2(an−1−1)+2n,两边同除以

an−1
2n
an−1−1
2n−1
+1.即bn=bn-1+1即可证明{bn}是等差数列.
(II)利用“错位相减法”即可得出.
考试点:数列递推式;等差关系的确定;数列的求和.

知识点:本题考查了通过变形转化为等差数列、等差数列的通项公式、“错位相减法”等基础知识与基本技能方法,属于难题.