设a,b∈正实数,且a+b=1,求证:大于等于25/4

问题描述:

设a,b∈正实数,且a+b=1,求证:大于等于25/4

应该是(a+1/a)(b+1/b)≥25/4
(a+1/a)(b+1/b)
=(a²+1)(b²+1)/(ab)
=(a²+b²+a²b²+1)/(ab)
=[(a²+b²+2ab)-2ab+a²b²+1]/(ab)
=[(a+b)²+a²b²-2ab+1]/(ab) 【a+b=1]
=(a²b²-2ab+2)/(ab)
=ab+2/(ab)-2
∵a+b=1,a>0,b>0
a+b≥2√(ab)
∴ab≤1/4
又将ab看成自变量,函数ab+2/(ab)是减函数
ab=1/4时,ab+2/(ab)取得最小值1/4+8=33/4
∴ab+2/(ab)-2≥33/4-2=25/4
即是(a+1/a)(b+1/b)≥25/4