数学不等式求证题设a,b,c均为正实数,求证(1/2a)+(1/2b)+(1/2c)>=(1/(b+c))+(1/(c+a))+(1/(a+b))
问题描述:
数学不等式求证题
设a,b,c均为正实数,求证(1/2a)+(1/2b)+(1/2c)>=(1/(b+c))+(1/(c+a))+(1/(a+b))
答
(a-b)^2≥0
(a+b)^2≥4ab
1/4a+1/4b =(a+b)/4ab ≥(a+b)/(a+b)^2
1/4a+1/4b≥1/(a+b) (1)
同理 1/4a+1/4c≥1/(a+c) (2)
1/4b+1/4c≥1/(b+c) (3)
(1)+(2)+(3)得
1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)