等比数列{an},a1=a,公比为q,Sn是它的前n项和,求数列{Sn}的前n项和Tn
问题描述:
等比数列{an},a1=a,公比为q,Sn是它的前n项和,求数列{Sn}的前n项和Tn
答
Sn=a1[1-q^(n-1)]/(1-q)
则Tn=a1/(1-q) *[1-q^(1-1)+1-q^(2-1)+.+1-q^n]
=a1/(1-q) *(n+q+q²+q³+...+q^n)
=a1/(1-q) *[n+q(1-q^n)/(1-q)]
=[aq(1-q^n)+n(1-q)]/(1-q)²