设数列{an}满足a1=2,an+1=an+3•2n-1.(1)求数列{an}的通项公式an;(2)令bn=nan,求数列{bn}的前n项和Sn;(3)令cn=log2an+13,证明:1/c2c3+1/c3c4+…+1/cncn+1

问题描述:

设数列{an}满足a1=2,an+1=an+3•2n-1
(1)求数列{an}的通项公式an
(2)令bn=nan,求数列{bn}的前n项和Sn
(3)令cn=log2

an+1
3
,证明:
1
c2c3
+
1
c3c4
+…+
1
cncn+1
<1(n≥2).

(1)∵a1=2,an+1-an=3•2n-1,∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+3×20+3×21+3×22+…+3×2n-2=2+3(20+21+22+…+2n-2)=2+3×1(1-2n-1)1-2=3×2n-1-1(n≥2),经验证n=1也成立,∴an=3×2n-1-1;(...