设数列{an}满足a1=2,an+1=an+3•2n-1.(1)求数列{an}的通项公式an;(2)令bn=nan,求数列{bn}的前n项和Sn;(3)令cn=log2an+13,证明:1/c2c3+1/c3c4+…+1/cncn+1
问题描述:
设数列{an}满足a1=2,an+1=an+3•2n-1.
(1)求数列{an}的通项公式an;
(2)令bn=nan,求数列{bn}的前n项和Sn;
(3)令cn=log2
,证明:
an+1 3
+1
c2c3
+…+1
c3c4
<1(n≥2). 1
cncn+1
答
(1)∵a1=2,an+1-an=3•2n-1,∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+3×20+3×21+3×22+…+3×2n-2=2+3(20+21+22+…+2n-2)=2+3×1(1-2n-1)1-2=3×2n-1-1(n≥2),经验证n=1也成立,∴an=3×2n-1-1;(...