已知Sn=1/2n(n+1),Tn=S1+S2+S3+.+Sn,求Tn.
问题描述:
已知Sn=1/2n(n+1),Tn=S1+S2+S3+.+Sn,求Tn.
Tn=1+(1+2)+(1+2+3)+.+(1+2+3+...+n)=1/2[1^+2^+3^.+n^)+(1+2+3...+n)]
^代表平方,这一步怎么来的,能说清楚些么
答
因为但看1+2+3...+n这个数列,通项公式为n(n+1)/2=n^/2+n/2
所以1=1/2(1^+1) 1+2=1/2(2^+2) 1+2+3=1/2(3^+3)以此类推,提出共因数1/2,合并括号内的,就得到左边的式子1^+2^+....+n^怎么求?