在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,AC上存在一点E,使PE⊥DE,则PE的长为?

问题描述:

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,AC上存在一点E,使PE⊥DE,则PE的长为?

平面AC"这句说的有问题,两点是不能确定一个平面的,
如果是PA⊥平面ABC
则过A点做的BD垂直线交于E点,连接PE,
则得到PE⊥BD即为点P到对角线BD的距离;
在三角形ABD中,可得到AE=12/5;
在三角形PAE中,PE^2=PA^2+AE^2
PE^2=1^2+(12/5)^2
PE=13/5