一道函数类应用题!
问题描述:
一道函数类应用题!
为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元) (1).当100≤x≤200,200<x≤300时,y与x之间的函数关系式分别是 (2)当100≤x≤200,200<x≤300时,第一年的年获利w与x函数关系式分别是()(年获利=年销售额-生产成本-节电投资) (3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,根据题意列方程得-----
答
当100≤x≤200时,销售减少的量为