把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为 _ .

问题描述:

把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为 ___ .

如图,当平面BAC⊥平面DAC时,三棱锥体积最大
取AC的中点E,则BE⊥平面DAC,
故直线BD和平面ABC所成的角为∠DBE
cos∠DBE=

BE
BD
=
2
2

∴∠DBE=
π
4

故答案为:
π
4