把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为 _ .
问题描述:
把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为 ___ .
答
如图,当平面BAC⊥平面DAC时,三棱锥体积最大
取AC的中点E,则BE⊥平面DAC,
故直线BD和平面ABC所成的角为∠DBE
cos∠DBE=
=BE BD
,
2
2
∴∠DBE=
.π 4
故答案为:
.π 4