已知函数f(x)是R上的单调增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值(  ) A.恒为正数 B.恒为负数 C.恒为0 D.可正可负

问题描述:

已知函数f(x)是R上的单调增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值(  )
A. 恒为正数
B. 恒为负数
C. 恒为0
D. 可正可负

∵函数f(x)是R上的奇函数且是增函数数列,
∴取任何x2>x1
总有f(x2)>f(x1),
∵函数f(x)是R上的奇函数,
∴f(0)=0,
∵函数f(x)是R上的奇函数且是增函数,
∴当x>0,f(0)>0,
当x<0,f(0)<0.
∵数列{an}是等差数列,
a1+a5=2a3
a3>0,
∴a1+a5>0,
则f(a1)+f(a5)>0,
∵f(a3)>0,
∴f(a1)+f(a3)+f(a5)恒为正数.