如图,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E.求证:BC垂直且平分DE.

问题描述:

如图,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E.求证:BC垂直且平分DE.

证明:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∠DAH=∠DCA∠CAD=∠ABEAB=AC∴△ABE≌△CAD(ASA),∴AD=BE,...
答案解析:证明出△DBP≌△EBP,即可证明BC垂直且平分DE.
考试点:线段垂直平分线的性质;全等三角形的判定与性质.


知识点:此题关键在于转化为证明出△DBP≌△EBP.通过利用图中所给信息,证明出两三角形全等,而证明全等可以通过证明角相等和线段相等来实现.