已知x>y>0,且xy=1,求(x2+y2)/(x-y)的最小值及相应的x,y的值.

问题描述:

已知x>y>0,且xy=1,求(x2+y2)/(x-y)的最小值及相应的x,y的值.

(x2+y2)/(x-y)= (x2+y2-2xy+2xy)/(x-y) 因为xy=1,所以 =[(x-y)^2+2]/(x-y) =(x-y)+2/(x-y) 因为x>y>0所以(x-y)>0 所以有不等式的定理知道 (x-y)+2/(x-y)>=2根号下[(x-y)*2/(x-y)]=2根号2 而此时(x-y)^2=2 符合上...