设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1. (Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)设cn=anbn,求数列{cn}的前n项和Tn.
问题描述:
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
,求数列{cn}的前n项和Tn. an bn
答
(1):当n=1时,a1=S1=2;当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
故{an}的通项公式为an=4n-2,即{an}是a1=2,公差d=4的等差数列.
设{bn}的公比为q,则b1qd=b1,d=4,∴q=
.1 4
故bn=b1qn-1=2×
,即{bn}的通项公式为bn=1 4n-1
.2 4n-1
(II)∵cn=
=an bn
=(2n-1)4n-1,4n-2
2 4n-1
Tn=c1+c2+…+cn
Tn=1+3×41+5×42+…+(2n-1)4n-1
4Tn=1×4+3×42+5×43+…+(2n-3)4n-1+(2n-1)4n
两式相减得,3Tn=-1-2(41+42+43+…+4n-1)+(2n-1)4n=
[(6n-5)4n+5]1 3
∴Tn=
[(6n-5)4n+5]1 9