求函数的二阶偏导数:Z=ln(e^x+e^y)?对x求一阶导数时,为什么答案e^x会变成

问题描述:

求函数的二阶偏导数:Z=ln(e^x+e^y)?对x求一阶导数时,为什么答案e^x会变成
对x求一阶导数时,为什么答案e^x会变成分子?不是对x求导吗,为什么e^y还在?

设:f(x,y) = e^x + e^y
原题:z(x,y) = ln f(x,y) = ln ( e^x + e^y) 这是复合函数求导数的问题,求z对x的偏导数首先对对数函数ln()求导数,因为ln x的导数为1/x,于是e^x+e^y整体就都到分母上去了,之后再对f(x,y)对x求导数,这时e^y当常数看待:
∂z/∂x = e^x/(e^x+e^y) (1)
∂z/∂y = e^y/(e^x+e^y) (2)
二阶偏导数对(1)、(2)分别对x、y再求一次导数.