观察下列等式 1^3=1^2 1^3+2^3=3^2 1^3+2^3+3^3=6^2 1^3+2^3+3^3+4^3=10^2 想一想 等式左边各个幂的底数与右边幂的底数有什么关系 并用等式表示出规律 再利用这一规律计算1^3+2^3+3^
问题描述:
观察下列等式 1^3=1^2 1^3+2^3=3^2 1^3+2^3+3^3=6^2 1^3+2^3+3^3+4^3=10^2 想一想 等式左边各个幂的底数与右边幂的底数有什么关系 并用等式表示出规律 再利用这一规律计算1^3+2^3+3^3+4^3+...+100^3的值
答
规律:1^3+2^3+3^3+4^3+...+n^3=(n(n+1))^2/4
所以1^3+2^3+3^3+4^3+...+100^3,n取100,则
1^3+2^3+3^3+4^3+...+100^3=(100(100+1))^2/4=25502500