已知:函数y=ax2+x+1的图象与x轴只有一个公共点. (1)求这个函数关系式;(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直

问题描述:

已知:函数y=ax2+x+1的图象与x轴只有一个公共点.

(1)求这个函数关系式;
(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上?若在抛物线上,求出M点的坐标;若不在,请说明理由.

(1)当a=0时,y=x+1,图象与x轴只有一个公共点
当a≠0时,△=1-4a=0,a=

1
4
,此时,图象与x轴只有一个公共点.
∴函数的解析式为:y=x+1或y=
1
4
x2+x+1;
(2)设P为二次函数图象上的一点,过点P作PC⊥x轴于点C;
∵y=ax2+x+1是二次函数,由(1)知该函数关系式为:
y=
1
4
x2+x+1,
∴顶点为B(-2,0),图象与y轴的交点
坐标为A(0,1)
∵以PB为直径的圆与直线AB相切于点B
∴PB⊥AB则∠PBC=∠BAO
∴Rt△PCB∽Rt△BOA
PC
OB
=
BC
AO
,故PC=2BC,
设P点的坐标为(x,y),
∵∠ABO是锐角,∠PBA是直角,
∴∠PBO是钝角,
∴x<-2
∴BC=-2-x,PC=-4-2x,
即y=-4-2x,P点的坐标为(x,-4-2x)
∵点P在二次函数y=
1
4
x2+x+1的图象上,
∴-4-2x=
1
4
x2+x+1
解之得:x1=-2,x2=-10
∵x<-2,
∴x=-10,
∴P点的坐标为:(-10,16)
(3)点M不在抛物线y=ax2+x+1上
由(2)知:C为圆与x轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ,即QE是中位线.
∴QE∥MD,QE=
1
2
MD,QE⊥CE
∵CM⊥PB,QE⊥CE,PC⊥x轴
∴∠QCE=∠EQB=∠CPB
∴tan∠QCE=tan∠EQB=tan∠CPB=
1
2

CE=2QE=2×2BE=4BE,又CB=8,
故BE=
8
5
,QE=
16
5

∴Q点的坐标为(-
18
5
16
5

可求得M点的坐标为(
14
5
32
5

1
4
(
14
5
)
2
+
14
5
+1=
144
25
32
5

∴C点关于直线PB的对称点M不在抛物线y=ax2+x+1上.