正方形ABCD中,E为AB的中点,F为CD延长线上一点,且角FEC=角FCE,EF交AD于P,求证S三角形AEP=4S三角形PDF

问题描述:

正方形ABCD中,E为AB的中点,F为CD延长线上一点,且角FEC=角FCE,EF交AD于P,求证S三角形AEP=4S三角形PDF

从AB的中点E,作EG垂直CD于G,则点G为CD的中点.设AE=EB=m,则CG=DG=m,设DF=X,则EF=CF=2m+X;EG^2+GF^2=EF^2,即(2m)^2+(m+X)^2=(2m+x)^2,2mx=m^2,x=(1/2)m;故DF/AE=[(1/2)m]/m=1/2.AB平行于DF,则⊿AEP∽⊿DFP,S⊿AEP/S⊿P...