向量法证明立体几何中的八大定理

问题描述:

向量法证明立体几何中的八大定理
判定定理:1.如果平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
2.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
3、如果一条直线和一个平面内两条相交直线都垂直,那么该直线与此平面垂直.
4、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
性质定理:1、如果一条直线与另一个平面平行,那么过该直线的任意一个平面与已知平面的交线与该直线平行.
2如果两个平行平面同时与第三个平面相交,那么他们的交线平行.
3如果两条直线同垂直于一个平面,那么这两条直线平行.
4如果两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面.
希望回答能详细点,最好能带上图解,记着是用(空间)向量的方法证明以上定理,

面面垂直说明:b⊥L不一定成立.如图,设直线a对应AB,则直线b对应BF或者BE都可以满足条件.而直线L则是对应CD.由此可知b⊥L不一定成立.证明α垂直于β实际上就是定理“如果一个平面经过了另一个平面的一条垂线,那么这两...