快来,如图,直线y=x+b,b不等于0交坐标轴于A,B两点,交双曲线y=2/...
问题描述:
快来,如图,直线y=x+b,b不等于0交坐标轴于A,B两点,交双曲线y=2/...
快来,如图,直线y=x+b,b不等于0交坐标轴于A,B两点,交双曲线y=2/x于D,过D作两坐标轴的垂线DC,DE,连结OD
如图,直线y=x+b,b不等于0交坐标轴于A,B两点,交双曲线y=2/x于D,过D作两坐标轴的垂线DC,DE,连结OD
1.求证:AD平分∠CDE:
2.对任意的史书b(b不等于0),求证ad*bd为定值
3.是否存在直线AB,使得四边形obcd为为平行四边形?若存在,求出直线的解释式,若不存在,请说出理由 不要图的
答
1.y=x+b 斜率是1 既∠EBD=45°
所以∠EDB=90°-45°=45°
因为DE⊥DC
所以AD平分∠CDE
2.因为∠EDB=45°
所以BD²=2DE²
AD²=2DC²
所以(BD×AD)²=4×(DE×DC)²
因为D在 X×Y=2曲线上 D的坐标为(|DE|,|DC|)
所以 |DE|×|DC|=2
所以(BD×AD)²=4×(DE×DC)²=16
所以BD×AD=4 为定值
3.若存在 则DC=OB
既DC=OE=OB
因为DE=BE=2OB
由 |DE|×|DC|=2 可得2OB×OB=2 既OB=1
b=-1
所以存在b=-1 既 直线AB:Y=X-1 使得四边形DOBC为平行四边形