已知定义域为[0,1]的函数f(x)同时满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③当x1,x2∈[0,1],且x1+x2∈[0,1]时,f(x1+x2)≥f(x1)+f(x2)成立.称这样的函数为“友谊函数”.请解答下列各题:(1)已知f(x)为“友谊函数”,求f(0)的值;(2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?请给出理由;(3)已知f(x)为“友谊函数”,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,求证:f(x0)=x0.

问题描述:

已知定义域为[0,1]的函数f(x)同时满足以下三个条件:
①对任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③当x1,x2∈[0,1],且x1+x2∈[0,1]时,f(x1+x2)≥f(x1)+f(x2)成立.称这样的函数为“友谊函数”.
请解答下列各题:
(1)已知f(x)为“友谊函数”,求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?请给出理由;
(3)已知f(x)为“友谊函数”,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,求证:f(x0)=x0

(1)令x1=1,x2=0,则x1+x2=1∈[0,1].
由③,得f(1)≥f(0)+f(1),即f(0)≤0.
又由①,得f(0)≥0,所以f(0)=0.
(2)g(x)=2x-1是友谊函数.
任取x1,x2∈[0,1],x1+x2∈[0,1],有2x1≥1,2x2≥1.
则(2x1-1)(2x2-1)≥0.
即g(x1+x2)≥g(x1)+g(x2).又g(1)=1,
故g(x)在[0,1]上为友谊函数.
(3)取0≤x1<x2≤1,则0<x2-x1≤1.
因此,f(x2)≥f(x1)+f(x2-x1)≥f(x1).
假设f(x0)≠x0
若f(x0)>x0,则f[f(x0)]≥f(x0)>x0
若f(x0)<x0,则f[f(x0)]≤f(x0)<x0
都与题设矛盾,因此f(x0)=x0
答案解析:(1)赋值可考虑取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),结合已知f(0)≥0,可求f(0)
(2)要判断函数g(x)=2x-1在区间[0,1]上是否为“友谊函数,只要检验函数g(x)=2x-1在[0,1]上是否满足①g(x)>0;②g(1)=1;③x1≥0,x2≥0,且x1+x2≤1,有g(x1+x2)≥g(x1)+g(x2)即可.
(3)利用反正法,先假设f(x0)≠x0,然后分f(x0)>x0,f(x0)<x0,两种情况分别进行论证即可
考试点:抽象函数及其应用.
知识点:采用赋值法是解决抽象函数的性质应用的常用方法,而函数的新定义往往转化为一般函数性质的研究,本题结合指数函数的性质研究函数的函数的函数值域的应用,指数函数的单调性的应用.