某线段与X轴、Y轴上两点构成平行四边形,求在X轴【或Y轴上】某一点的坐标,怎么求,有几种求法?
问题描述:
某线段与X轴、Y轴上两点构成平行四边形,求在X轴【或Y轴上】某一点的坐标,怎么求,有几种求法?
例如09年抚顺市中考最后一题第三小问
答
假定为一般情况,线段AB两端的坐标分别为A(a,b),B(c,d).过AB的直线的斜率为k = (d - b)/(c - a)
AB与X轴、Y轴上两点(C,D)构成平行四边形,过CD的直线的斜率也是k = (d - b)/(c - a).
设D的坐标为D(0,m),过CD的直线的方程为:y = (d-b)x/(c-a) + m
取y = 0,得x = -m(c - a)/(d -b)
C的坐标为C(-m(c - a)/(d -b),0)
ABCD构成平行四边形,则|AB|^2 = |CD|^2
|AB|^2 = (c-a)^2 + (d-b)^2
|CD|^2 = [m(c - a)/(d -b)]^2 + m^2 = m^2 [1+(c - a)^2/(d -b)^2]
(c-a)^2 + (d-b)^2 = m^2 [1+(c - a)^2/(d -b)^2]
由此可得m,进而得到C,D的坐标.