设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,n属于N+
问题描述:
设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,n属于N+
(1):求A2,A3,A4,并求数列{An}的通项公式
(2):对一切n属于N+,证明2/(An+2)小于An/Bn成立
答
2na(n+1)=(n+1)a(n),
2^(n+1)*n*a(n+1)=(n+1)*2^n*a(n),
2^(n+1)*a(n+1)/(n+1)=2^n*a(n)/n=...=2^1*a(1)/1=2*(1/2)=1,
a(n)=n*2^(-n),n=1,2,...
b(n)=ln[1+a(n)]+(1/2)[a(n)]^2=ln[1+n*2^(-n)]+(1/2)[n2^(-n)]^2,..
b(n)表达式有误吧.Bn=ln(1+An)+1/2(An的平方)2b(n)-[a(n)+2]a(n)=2ln[1+n2^(-n)]+[n2^(-n)]^2-[n*2^(-n)]^2-2n*2^(-n)=2ln[1+n2^(-n)]-2n2^(-n).记x=n2^(-n),则x>0,e^x>1+x, x >ln(1+x).故,2b(n)-[a(n)+2]a(n)=2{ln[1+n2^(-n)]-n2^(-n)}