设{an}是公差不为零的等差数列,Sn为其前n项和,满足(a2)^2+(a3)^2=(a4)^2+(a5)^2,S7=7

问题描述:

设{an}是公差不为零的等差数列,Sn为其前n项和,满足(a2)^2+(a3)^2=(a4)^2+(a5)^2,S7=7
1.求an的通向公示及Sn
1,试求所有的正整数m,使得【am+a(m+1)】/a(m+2)为数列an的中项

1) 设首项为a1,公差为d,a2^2+a3^2=a4^2+a5^2(a5+a3)*(a5-a3)+(a4+a2)(a4-a2)=0由于 a5-a3=a4-a2=2d≠0,所以 a2+a3+a4+a5=0则 4a1+10d=0 (1)7a1+21d=7 (2)解得 a1=-5,d=2所以 an=2n-7Sn=(a1+an)*n/2=(2n-12)n/2=n(n-6...