设数列{an}(n∈N)满足a0=0,a1=2,且对一切n∈N,有an+2=2an+1-an+2. (1)求数列{an}的通项公式; (2)设 Tn=1/3a1+1/4a2+1/5a3+…+1/(n+2)an,求Tn的取值范围.

问题描述:

设数列{an}(n∈N)满足a0=0,a1=2,且对一切n∈N,有an+2=2an+1-an+2.
(1)求数列{an}的通项公式;
(2)设 Tn=

1
3a1
+
1
4a2
+
1
5a3
+…+
1
(n+2)an
,求Tn的取值范围.

(1)由an+2-an+1=an+1-an+2可得:数列an+1-an为等差数列,且首项a1-a0=2-0=2,公差为2(3分)∴an-an-1=(a1-a0)+2(n-1)=2+2(n-1)=2n(4分)∴an=a1+(a2−a1)+(a3−a2)++(an−an−1)=2+4+6++2n=n(2+2n)2=n...