设平面图形D由x^2+y^2<=2x与y>=x所确定,试求D绕直线y=0旋转一周所生成的旋转体的体积

问题描述:

设平面图形D由x^2+y^2<=2x与y>=x所确定,试求D绕直线y=0旋转一周所生成的旋转体的体积

解法一:所求体积=∫[π(2x-x²)-πx²]dx
=2π∫(x-x²)dx
=2π(1/2-1/3)
=π/3;
解法二:所求体积=∫[2πy*y-2πy*(1-√(1-y²))]dy
=2π∫[y²-y+y√(1-y²))]dy
=2π(1/3-1/2+1/3)
=π/3.