设椭圆C:x2/a2+y2/b2=1 的左焦点为F,过点F的直线与椭圆C相交于A、B两点,直线l的倾斜角为60度,向量AF=2向量FB.如果lABl=15/4,求椭圆C的方程.
问题描述:
设椭圆C:x2/a2+y2/b2=1 的左焦点为F,过点F的直线与椭圆C相交于A、B两点,直线l的倾斜角为60度,向量AF=2向量FB.如果lABl=15/4,求椭圆C的方程.
(2)解析:|AB|=√(1+1/3)*|y1-y2|=15/42√3/3*|y1-y2|=15/4==>|y1-y2|=15√3/8由(1)知y1=-2y2==>y2=5√3/8∵e=2/3,∴a=3,b=√5∴x^2/9+y^2/5=1问一下这个|AB|=√(1+1/3)*|y1-y2|=15/4是从何而来,
答
弦长公式:|AB|=|x1-x2|√(1+k^2),或,|AB|=:|AB|=|y1-y2|√(1+1/k^2),AB椭圆的弦,设A(x1,y1),B(x2,y2),则AB斜率k=(y1-y2)/(x1-x2)|AB|=√[(x1-x2)^2+(y1-y2)^2]=|x1-x2|√[1+(y1-y2)^2/(x1-x2)^2]=|x1-x2|√(1+k^2)或...