直线y=kx-k+2与抛物线y=1/4x2-1/2x+5/4交于A,B两 点,抛物线的对称轴与x轴交于点Q.(3)对于任意的实数k,是否都存在一条固定的直线与以AB为直径的圆相切?若存在,求直线解析式,若不存在,说明理由.
问题描述:
直线y=kx-k+2与抛物线y=1/4x2-1/2x+5/4交于A,B两 点,抛物线的对称轴与x轴交于点Q.(3)对于任意的实数k,是否都存在一条固定的直线与以AB为直径的圆相切?若存在,求直线解析式,若不存在,说明理由.
答
(3)存在定直线与以AB为直径的圆相切,此直线即x轴,解析式是y=0.理由如下:交点A(x1,y1)、B(x2,y2)的坐标符合方程组:y=kx−k+2y=14x2−12x+54,消掉y得,14x2-...