斜率为k的直线经过抛物线y^2=2px的焦点F,并与抛物线相交于两点A(x1,y1),B(x2,y2)

问题描述:

斜率为k的直线经过抛物线y^2=2px的焦点F,并与抛物线相交于两点A(x1,y1),B(x2,y2)
证明:(1)y1*y2=-p^2
(2)x1*x2=(p^2)/4

弦AB斜率k=(y1-y2)/(x1-x2)=(y1-y2)/[(y1^2/2p)-(y2^2/2p)]=2p/(y1+y2) (1)而A、F、B三点共线,故k=(y1-0)/(x1-p/2) (2)由(1)、(2)得y1/(x1-p/2)=2p/(y1+y2)--->y1y2+y1^2=2px1-p^2而y1^2=2px1故y1y2=-p^2 又x1x2=(y1...